Go Back
  • For Business
  • |
  • Warnings
  • Data Suite
  • Newsletters
  • Advertising
  • Superior Accuracy™
Tropical Storm Erick in Eastern Pacific may rapidly strengthen Chevron right
Extreme heat expands across Central US; some temps to top 100 degrees Chevron right

Columbus, OH

71°F
Location Chevron down
Location News Videos
Use Current Location
Recent

Columbus

Ohio

71°
No results found.
Try searching for a city, zip code or point of interest.
settings
Columbus, OH Weather
Today WinterCast Local {stormName} Tracker Hourly Daily Radar MinuteCast Monthly Air Quality Health & Activities

Around the Globe

Hurricane Tracker

Severe Weather

Radar & Maps

News

News & Features

Astronomy

Business

Climate

Health

Recreation

Sports

Travel

For Business

Warnings

Data Suite

Newsletters

Advertising

Superior Accuracy™

Video

Winter Center

AccuWeather Early Hurricane Center Top Stories Trending Today Astronomy Heat Climate Health Recreation In Memoriam Case Studies Blogs & Webinars

News / Astronomy

NASA spacecraft collision may have created a meteor shower that will last for 100 years

Small, rocky debris created when NASA intentionally slammed a spacecraft into an asteroid could create a new meteor shower that may be visible from Earth or Mars.

By Ashley Strickland, CNN

Published Sep 2, 2024 9:09 AM EDT | Updated Sep 2, 2024 9:09 AM EDT

Copied

The last complete image of asteroid moonlet Dimorphos was taken by the DRACO imager on NASA's DART mission at a distance of about 7 miles (12 kilometers) and 2 seconds before impact. (NASA/Johns Hopkins APL via CNN Newsource)

Editor's note: Sign up for CNN’s Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more

(CNN) — Rocky debris blasted away from the tiny asteroid Dimorphos when NASA’s DART spacecraft intentionally slammed into it in 2022 could create the first human-made meteor shower known as the Dimorphids, new study has found.

The space agency planned the DART, or Double Asteroid Redirection Test, mission to carry out a full-scale assessment of asteroid deflection technology on behalf of planetary defense. NASA wanted to see whether a kinetic impact — such as crashing a spacecraft into an asteroid at 13,645 miles per hour (6.1 kilometers per second) — would be enough to change the motion of a celestial object in space.

Neither Dimorphos or the large parent space rock it orbits, known as Didymos, pose a danger to Earth. Still, the double-asteroid system was a perfect target to test deflection technology because Dimorphos’ size is comparable to asteroids that could threaten our planet.

Astronomers have used ground-based telescopes to monitor the impact’s aftermath for nearly two years, and they determined that the DART spacecraft did successfully change the way Dimorphos moves, shifting the moonlet asteroid’s orbital period — or how long it takes to make a single revolution around Didymos — by about 32 to 33 minutes.

But scientists also estimated the intentional collision generated more than 2 million pounds (nearly 1 million kilograms) of rocks and dust — enough to fill about six or seven rail cars. Where exactly in space all of that material will end up has remained an open question.

Now, new research suggests fragments of Dimorphos will arrive in the vicinity of Earth and Mars within one to three decades, with the possibility that some debris could reach the red planet within seven years. Small debris could also reach Earth’s atmosphere within the next 10 years. The Planetary Science Journal has accepted the study for publication.

“This material could produce visible meteors (commonly called shooting stars) as they penetrate the Martian atmosphere,” said lead study author Eloy Peña Asensio, a postdoctoral researcher for the Deep-space Astrodynamics Research and Technology group at Italy’s Polytechnic University of Milan. “Once the first particles reach Mars or Earth, they could continue to arrive intermittently and periodically for at least the next 100 years, which is the duration of our calculations.”

Predicting space debris

The individual pieces are small, ranging from sand grain-type particles to fragments similar in size to smartphones, so none of the debris poses a risk to Earth, Peña Asensio said.

“They would disintegrate in the upper atmosphere through a process known as ablation, caused by friction with the air at hypervelocity,” he said. “There is no possibility of a Dimorphos material reaching Earth’s surface.”

But understanding when the debris could reach Earth is more challenging and depends on estimating the velocity of the fragments.

When the spacecraft crashed into Dimorphos, it wasn’t alone. A small satellite named LICIACube separated from the spacecraft before impact to capture footage of the collision and the debris cloud that formed afterward.

“This crucial data has enabled and continues to enable detailed analysis of the debris produced by the impact,” Peña Asensio said.

LICIACube shows plumes of debris streaming from the Dimorphos asteroid after NASA's Double Asteroid Redirect Test made impact with it on September 26, 2022. (ASI/NASA/APL via CNN Newsource)

The research team used LICIACube data and the supercomputing facilities of the Consortium of University Services of Catalonia to simulate the trajectory of 3 million particles that the impact created. The computer modeling measured different possible pathways and velocities of the particles across the solar system as well as how radiation released by the sun might affect the motion of the particles.

Previous research ahead of the impact had suggested the possibility of Dimorphos’ particles reaching Earth or Mars, Peña Asensio said, but for the new study, the team restricted the simulations to align with post-impact data from LICIACube.

The study’s results confirm that if the debris were ejected from Dimorphos at speeds of 1,118 miles per hour (500 meters per second), some fragments could reach Mars, while other, smaller and faster-moving debris traveling at 3,579 miles per hour (1,600 meters per second) has the potential to reach Earth.

The team said uncertainties remain regarding the nature of the debris but concluded the fastest-moving particles could reach Earth in less than 10 years.

The study authors consider the possibility of the Dimorphids meteor shower reaching Earth unlikely, but they can’t rule it out, Peña Asensio said. And if it did occur, it would be a small, faint meteor shower.

“The resulting meteor shower would be easily identifiable on Earth, as it would not coincide with any known meteor showers,” he said by email. “These meteors would be slow-moving, with peak activity expected in May, and primarily visible from the southern hemisphere, seemingly originating from near the Indus constellation.”

And while the researchers didn’t explore this possibility in their paper, their investigation suggested Dimorphos’ debris could reach other, nearby asteroids.

A visit to the aftermath

Ejected debris was expected from the impact, but the possibility of material reaching Earth or Mars could only be calculated after the collision, said study coauthor Michael Küppers, planetary scientist at the European Space Astronomy Centre.

“Personally, initially I was surprised to see that, although the impact happened close to Earth (at about an 11-million-kilometer distance), it is easier for the impact ejecta (debris) to reach Mars than to reach Earth,” Küppers said by email. “I believe the reason is that Didymos crosses the orbit of Mars, but stays just outside the orbit of Earth.”

Boulders can be seen on Dimorphos' surface just before impact. (NASA/Johns Hopkins APL via CNN Newsource)

Particles can be ejected from near-Earth asteroids, such as Phaethon, which is responsible for the Geminid meteor shower that peaks in mid-December each year. Studying what was released by the DART impact could help predict when such material could reach Earth or Mars, said Patrick Michel, astrophysicist and director of research at the National Centre for Scientific Research in France. Michel was not involved in the study.

“This study tries to quantify this possibility and confirms that it may happen, even if it relies on modeling that has its own uncertainties,” Michel said.

Future observations could help researchers refine mass measurements of the debris and determine how quickly it is moving to calculate the expected meteor activity, Peña Asensio said.

Those observations will be conducted by the Hera mission. The European Space Agency mission is expected to launch in October to observe the aftermath of the DART impact, arriving at the asteroid system near the end of 2026. Together with a pair of CubeSats, the spacecraft will study the composition and mass of Dimorphos and its transformation by the impact. Hera will also determine how much momentum was transferred from the spacecraft to the asteroid.

“Is there an impact crater, or was the impact so large that Dimorphos was globally reshaped?” said Küppers, who is also a project scientist for the Hera mission. “From ground-based data, we have some evidence for the latter. Hera will tell us for sure. Also, we will see if the impact left Dimorphos (tumbling).”

Overall, the mission will enable astronomers to understand the dynamical evolution of debris “produced by an impact in such a complex system of double asteroids,” Michel said.

More Space and Astronomy:

Planetary parade: See 6 planets in September sky
Blue Origin successfully completes 8th crewed New Shepard space tourism flight
'Super Harvest Moon Eclipse' to be summer's final astronomy event

The-CNN-Wire
™ & © 2024 Cable News Network, Inc., a Warner Bros. Discovery Company. All rights reserved.

Report a Typo

Weather News

video

Shark season returning to the Jersey Shore

Jun. 13, 2025
Weather News

'Cicada attack' blamed for car crash in Ohio

Jun. 16, 2025
Recreation

Skier airlifted after 1,000-foot fall down Colorado mountain

Jun. 16, 2025
Show more Show less Chevron down

Topics

AccuWeather Early

Hurricane Center

Top Stories

Trending Today

Astronomy

Heat

Climate

Health

Recreation

In Memoriam

Case Studies

Blogs & Webinars

Top Stories

Weather News

Deadly West Virginia flooding won't be the last of this week

3 hours ago

Severe Weather

Rounds of severe storms to continue in central and eastern US

3 hours ago

Recreation

Tourist falls trying to view Kilauea eruption

21 hours ago

Weather Forecasts

More stormy downpours for northeast US, but heatwave is on horizon

2 hours ago

Astronomy

Will the Aurora Borealis be visible this week?

20 hours ago

More Stories

Featured Stories

Recreation

Northern US states try to woo travelers with ‘Canadians-only’ deals

19 hours ago

Astronomy

Summer solstice: Everything to know about the year's longest day

1 week ago

Weather News

5 times the American flag survived extreme weather

20 hours ago

Weather News

Reopening a 688-year-old murder case

23 hours ago

Weather News

6,000-year-old skeletons found in Colombia have unique DNA

23 hours ago

AccuWeather Astronomy NASA spacecraft collision may have created a meteor shower that will last for 100 years
Company
Proven Superior Accuracy About AccuWeather Digital Advertising Careers Press Contact Us
Products & Services
For Business For Partners For Advertising AccuWeather APIs AccuWeather Connect RealFeel® and RealFeel Shade™ Personal Weather Stations
Apps & Downloads
iPhone App Android App See all Apps & Downloads
Subscription Services
AccuWeather Premium AccuWeather Professional
More
AccuWeather Ready Business Health Hurricane Leisure and Recreation Severe Weather Space and Astronomy Sports Travel Weather News Winter Center
Company
Proven Superior Accuracy About AccuWeather Digital Advertising Careers Press Contact Us
Products & Services
For Business For Partners For Advertising AccuWeather APIs AccuWeather Connect RealFeel® and RealFeel Shade™ Personal Weather Stations
Apps & Downloads
iPhone App Android App See all Apps & Downloads
Subscription Services
AccuWeather Premium AccuWeather Professional
More
AccuWeather Ready Business Health Hurricane Leisure and Recreation Severe Weather Space and Astronomy Sports Travel Weather News Winter Center
© 2025 AccuWeather, Inc. "AccuWeather" and sun design are registered trademarks of AccuWeather, Inc. All Rights Reserved.
Terms of Use | Privacy Policy | Cookie Policy | About Your Privacy Do Not Sell or Share My Personal Information

...

...

...